The Molecular Vibrations and Rotational Isomerism of Chloro(chloromethyl)silane¹⁾

Keiichi Sera*

Department of Chemistry, Faculty of Science, Hiroshima University, Hiroshima 730 (Received June 22, 1974)

The infrared spectra of chloro(chloromethyl)silane, ClCH₂SiH₂Cl, and its deuterated species, ClCH₂SiD₂Cl, have been measured in the gaseous, liquid, and crystalline states. The Raman spectra have also been measured in the liquid state. The vibrational spectra have shown that two rotational isomers coexist in the gaseous and liquid states, while only one isomer persists in the crystalline state. The fundamental vibrations have been assigned for each isomer. The product rule, the calculation of the skeletal frequencies, and the band contours have indicated that the isomer persisting alone in the crystalline state is the trans form and that the other isomer is the gauche form. The solvent effects of the spectra have shown that the gauche form is more polar than the trans form. The normal vibrations have been calculated in a modified Urey-Bradley force field, and the force constants have been adjusted to predict well the observed frequencies for the isomers of both the parent and its deuterated species.

Many studies have been accumulated concerning the rotational isomerism of 1,2-substituted ethanes.²⁾ We have taken an interest in studying organosilicon compounds of these homologous series, in which the height of the potential barrier around a C–Si bond may be lower than that around a C–C bond.³⁾ Investigations of such organosilicon compounds as chloroethylsilane,⁴⁾ (chloromethyl)methylsilane,⁵⁾ and ethylmethylsilane⁵⁾ have been reported previously. Chloro(chloromethyl)silane is a molecule in which both the substituents around the C–Si bond are chlorine atoms; it is a homologous molecule of 1,2-dichloroethane, which has previously been investigated in detail.⁶⁾

Therefore, in this paper, we will deal with the molecular vibrations of chloro(chloromethyl)silane in relation to the rotational isomerism in order to compare the results with those of 1,2-dichloroethane and the analogues of alkylsilanes. By methods similar to those used for 1,2-dichloroethane; that is, the product rule and the calculation of the skeletal frequencies, the molecular forms of the isomers will be determined. The normal vibration calculation will also be carried out for each molecular form in a modified Urey-Bradley force field, and the force constants will be adjusted by a least-squares method in order to predict the observed frequencies well.

Experimental

Tetrachlorosilane was treated with diazomethane,⁷⁾ and the product (ClCH₂SiCl₃) was reduced with LiAlH₄ or Li-AlD₄ in *n*-butyl ether.⁸⁾ Chloromethylsilane was then reacted with HgCl₂ in a vacuum.⁹⁾ The sample of chloro(chloromethyl)silane was purified by distillation in a dry nitrogen atmosphere; bp 75—76 °C/760 mmHg.

The infrared spectra were recorded on a Perkin-Elmer instrument (Model 621) in the 200—4000 cm⁻¹ region and on a Hitachi Fis-3 far-infrared spectrophotometer in the 40—300 cm⁻¹ region. The spectra in the liquid state were recorded in CsI and polyethylene cells. The spectra in the gaseous state were measured at room temperature with a 10-cm gas cell fitted with CsI windows. In the crystalline state, the vapor of the sample was condensed on a CsI window cooled with liquid nitrogen in a vacuum and was then an-

nealed near the melting point. The solution spectra were measured using a sealed KRS-5 cell (0.2 mm thick), with *n*-hexane and acetonitrile as the solvents. The Raman spectra in the liquid state were measured with a JEOL Raman spectrometer (Model JAS-O2AS), using an argon-ion laser (488.0 nm) for excitation.

Results and Discussion

Rotational Isomerism. It has been determined by microwave studies that such molecules as chloromethylsilane¹⁰⁾ and dimethylsilane¹¹⁾ have a staggered con-

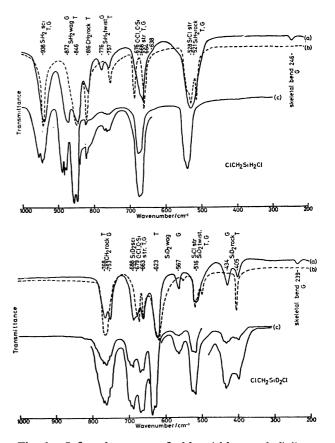


Fig. 1. Infrared spectra of chloro(chloromethyl)silane in the 200—1000 cm⁻¹ region; (a): in the liquid state,
(b): in the crystalline state, (c): in the gaseous state.

^{*} Former name: Keiichi Ohno.

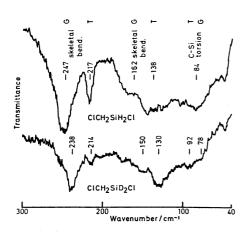


Fig. 2. Far-infrared spectra of chloro(chloromethyl)-silane in the liquid state in the 40—300 cm⁻¹ region.

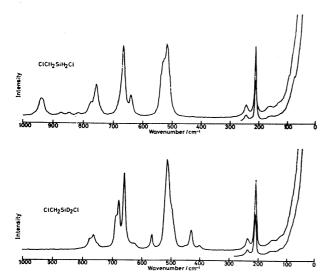


Fig. 3. Raman spectra of chloro(chloromethyl)silane in the liquid state in the region below 1000 cm⁻¹.

figuration around a C-Si bond. Therefore, in this substance, two rotational isomers of the *trans* and *gauche* forms can be expected. If this substance had a unique molecular form, it would show eighteen fundamental frequencies in both the infrared and Raman spectra.

Figures 1—2 and Fig. 3 show the infrared spectra in the 40—1000 cm⁻¹ region and the Raman spectra in the region below 1000 cm⁻¹ respectively. In the vibrational spectra, too many bands for one isomer are observed in the liquid state, while the absence of some of the bands in the crystalline state shows the existence of the rotational isomers in the liquid state. In the crystalline state, however, the existence of only one isomer is sufficient to account for the number of observed bands.

The vibrational assignments of this substance are made on the basis of the spectra of (chloromethyl)silane¹²⁾ and chloromethylsilane,¹³⁾ the relative intensities of both the infrared and Raman bands, and the infrared-band contours in the gaseous state. From the assignments of the observed spectra, given in Table 1, the sums of the squares of the fundamental frequencies

are found to be:

$$\sum v_i^2 = 3.638 \times 10^7$$

 $\sum v_i'^2 = 3.639 \times 10^7$ (0.1% difference)

for ClCH₂SiH₂Cl and:

$$\sum v_i^2 = 3.044 \times 10^7$$

 $\sum v_i'^2 = 3.038 \times 10^7$ (0.2% difference)

for ClCH₂SiD₂Cl, where ν_1 and ν'_1 indicate the frequencies of the isomers persisting and disappearing in the crystalline state respectively. From the above results, the assignments in Table 1 can be considered as acceptable.

Band Contours. The principal moments of inertia are calculated from the following parameters: C-Cl= 1.788 Å, C-Si=1.889 Å, Si-Cl=2.052 Å, C-H=1.096 Å Si-H=1.477 Å, tetrahedral bond angles, and the internal rotation angles of 180° (trans) and 60° (gauche). The bond lengths are transferred from those of (chloromethyl)silane10) and chloromethylsilane14) determined by microwave studies. Figure 4 shows the trans and gauche forms of chlorochloromethylsilane in the principal axis system. The trans form of this substance may have the C_s symmetry. The 18 normal vibrations are reduced to 11 vibrations of the A' species and 7 of A". The a and b internal axes are in the plane of symmetry, while the c axis is perpendicular to it. The A' vibrations may have either a-, b-, or ab-type infraredband contours in the case of an asymmetric top. The A" vibrations, on the other hand, have c-type band contours. The gauche form may have no symmetry (point group C₁). All the 18 normal vibrations are of the same symmetry of A.

The principal moments of inertia of I_a , I_b , and I_c calculated are 31.742 (38.838), 424.52 (427.66), and 447.17 (451.55) amu Ų for the trans form of ClCH₂-SiH₂(-D₂)Cl and 87.086 (95.978), 275.95 (281.16), and 338.37 (346.60) amu Ų for the gauche form. The Ray asymmetry parameters, κ , are -0.9918 (-0.9895) and -0.8432 (-0.8218) for the trans and gauche forms of ClCH₂SiH₂(-D₂)Cl respectively; these values show both the forms to be prolate asymmetric top molecules. The expected PR separations are calculated by the use of the method of Seth-Paul and Dijkstra.¹⁵⁾ The

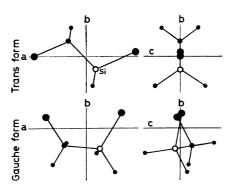


Fig. 4. Possible molecular forms of chloro(chloromethyl)silane in the principal axis system.

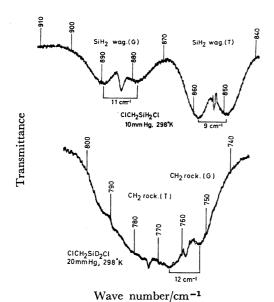


Fig. 5. Infrared band contours of the SiH₂ wagging vibration for ClCH₂SiH₂Cl and the CH₂ rocking vibration for ClCH₂SiD₂Cl.

PR separations of the a-, b-, and c-type band contours at the temperature of 298 K are estimated to be 9.6 (9.6), 8.0 (8.0), and 14.4 (14.3) cm⁻¹ for the *trans* form of ClCH₂SiH₂(-D₂)Cl and 11.6 (11.6), 9.5 (9.4), and 17.5 (17.4) cm⁻¹ for the *gauche* form, where the c-type band contours are expected to produce a PQR structure featuring a sharp Q branch but ill-defined P and R branches.¹⁶)

The PR separations of ClCH₂SiH₂(-D₂)Cl observed are between 8 and 12 cm⁻¹, as is shown in Fig. 5 and Table 1. Especially, for the bands assigned to the SiH₂ wagging vibration, the PR separation of the band at 883 cm⁻¹ (11 cm⁻¹) is larger than that of the band at 853 cm⁻¹ (9 cm⁻¹), where the former disappears in the crystalline state. The bands assigned to the CH₂ and SiD₂ rocking vibrations and persisting in the crystalline state (the band at 820 cm⁻¹ for ClCH₂SiH₂Cl and the bands at 774 and 403 cm⁻¹ for ClCH₂SiD₂Cl) have c-type band contours, while the corresponding bands disappearing in the crystalline state (the bands at 759 and 436 cm⁻¹ for ClCH₂SiD₂Cl) feature PQR structures with PR separations of 11—12 cm⁻¹. The results are consistent with the determination of the molecular forms using the product rule and the calculation of the skeletal frequencies to be described below.

Molecular Forms of Isomers. It has been mentioned by Mizushima et al.⁶) that the product rule and the calculation of the skeletal frequencies are useful for the determination of the molecular forms of the rotational isomers.

The products of the fundamental frequencies are:

$$\pi \nu_{\mathbf{i}}'/\pi \nu_{\mathbf{i}} = 1.146$$

for ClCH2SiH2Cl and:

$$\pi v_{i}' / \pi v_{i} = 1.099$$

for $ClCH_2SiD_2Cl$, where v_1 and v_1' indicate the frequencies of the isomers persisting and disappearing in

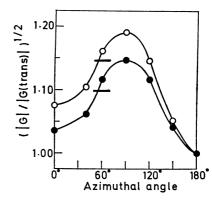


Fig. 6. The calculated values of $(|G'|/|G(trans)|)^{1/2}$ and the observed values of $\pi v'/\pi v(trans)$;

 $\begin{array}{ll} -\bigcirc -\colon (|G'|/|G(\mathit{trans})|)^{1/2} \text{ for } \mathrm{ClCH_2SiH_2Cl,} \\ - \bullet -\colon (|G'|/|G(\mathit{trans})|)^{1/2} \text{ for } \mathrm{ClCH_2SiD_2Cl,} \end{array}$

——: observed values.

the crystalline state respectively. When it is assumed that the force field is identical for both the rotational isomers, the relationship between the frequencies of the two isomers is:

$$\pi \nu_i'/\pi \nu_i = (|G(\nu')|/|G(\nu)|)^{1/2}.$$

Figure 6 gives the calculated values of $(|G|/|G-(trans)|)^{1/2}$) of a different azimuthal angle, where it is assumed that this substance has a staggered configuration. This shows that the bands persisting in the crystalline state are attributable to the *trans* form and that the bands disappearing in the crystalline state are attributable to the *gauche* form.

In order to confirm the above results, the skeletal frequencies of the parent species are calculated on the basis of the simple Urey-Bradley force field. The force constants used are K(C-Cl) = 2.90, K(C-Si) = 2.80, K(Si-Cl) = 2.59, H(Cl-C-Si) = 0.093, H(C-Si-Cl) = 0.117, $F(\text{Cl}\cdot\text{C}\cdot\text{Si}) = 0.21$, and $F(\text{C}\cdot\text{Si}\cdot\text{Cl}) = 0.16$ md/Å. The bending and repulsion force constants are transferred from those of (chloromethyl)silane¹²) and

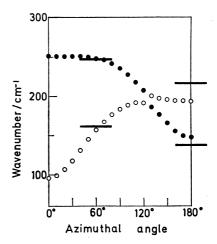


Fig. 7. Dependence of skeletal deformation frequencies of azimuthal angle;

O: calculated frequencies of the symmetric mode,

•: calculated frequencies of the antisymmetric mode,

——: observed frequencies.

Table 1. Observed and calculated frequencies of chloro(chloromethyl)silane^{a)} (cm⁻¹)

Infrared			Raman liquid	Calculated		P. E. D. ^{b)}
Gas Int.	Liquid Int.	Crystal Int.	Int.	T form	G form	1. D. D."
			ClCH ₂ SiH ₂ Cl			
	3000 vw	2999 vw	2997 mw	2998 A''	2998	$\nu_{\rm a} {\rm CH_2} \ (100)$
			2989 mw			
(2960 w (2950	2945 vw	2945 vw	2945 s	2945 A′		$\nu_{\rm s} { m CH_2} \ (100)$
2933 b vw	2936 vw		2936 s		2945	$v_{\rm s} {\rm CH_2} \ (100)$
,2227 sh		/2232				
2222 s		2221 s		2222 A''	2222	$v_a SiH_2$ (100)
2217						
2208						
2198 s	2208 b s		2200 vs	2220 A'	2220	$v_{\rm s}{\rm SiH_2}$ (100)
2185						
,1412						
1408 m	1398 m	1398 m	1398 w	1396 A'		sCH_2 (92)
1402	$1392\mathrm{sh}$	_	1392 sh w		1396	sCH ₂ (92)
1180	1180 sh w	_	1179 w		1162	wCH_2 (100)
1175 v w	1174 w	1171 m	1174 w	1157 A′		wCH_2 (100)
1170						
1112						
1107 vw	1106 w		1105 w		1116	<i>t</i> CH ₂ (84)
1101	1097 sh w	1092 m	1096 w	1116 A''		tCH_2 (85)
(954 945 s	938 s	940 s	938 m	953 A′	951	sSiH ₂ (95)
$\binom{941 \text{ sh}}{\mathbf{s}}$						
_/ 889						•
883 s	872 vs		873 vw	873 vw	902	$wSiH_2$ (85), rCH_2 (10)
\ ₈₇₈						
/ <mark>8</mark> 58						
853 vs	846]vs	846 vs	846 vw	885 A'		ωSiH_2 (99)
\ ₈₄₉						
822 w	010	010	010	/835 A"		rCH ₂ (51), tSiH ₂ (30)
817 w	816 m	818 vs	816 vw		776	tSiH ₂ (37), rCH ₂ (32)

Table 1. Continued

Infrared			Raman Calculated			D. E. D.N.		
Gas Int.	Liquid Int.	Crystal Int.	Liquid Int.	T form	G form	P. E. D.b)		
/770	776 w		774 mw		708	rCH ₂ (40), tSiH ₂ (33)		
764 w								
\ ₇₅₈	757 w	753 m	757 m	674 A''		tSiH ₂ (51), rCH ₂ (20), rSiH ₂ (23		
_/ 677	676 sh m	684 s		685 A'		νC-Cl (53), νC-Si (41)		
671 m	668 sh m				686	νC-Si (48), νC-Cl (36)		
\ ₆₆₇	664 s	657 s	664 s	640 A'		νC-Si (47), νC-Cl (33)		
	638 vw	-	638 w		645	ν C-Si (37), r SiH ₂ (23)		
575 sh vv	v							
567 sh vv	v 567 vw							
$/^{546~\mathrm{sh}}$		$\binom{534 \text{ sh}}{\mathbf{s}}$		/536 A'		νSi-Cl (95)		
539 s	528 b s	\527 °	528 s	/	514	<i>v</i> Si-Cl (89)		
\ ₅₃₅	521 sh s	512 s	517 s	/511 A''		$rSiH_2$ (42), rCH_2 (32)		
					500	$rSiH_2$ (50), ν C-Cl (35)		
	247 vw	_	245 w		253	δ ClCSi (55), δ ClSiC (28)		
	217 vvw		212 s	205 A'		δ ClSiC (31), δ ClCSi (27)		
	162 b vvw		160 w		161	δClSiC (43), δClCSi (20), τ (24)		
	138 b vw			134 A′		δ ClCSi (52), δ ClSiC (46)		
	84 b vvw		92 vw ?	92 A''		τ (87)		
			78 vw		78	τ (56), δ ClCSi (21), δ ClSiC (20)		
			ClCi	H ₂ SiD ₂ Cl				
	2998 vw	3000 vw	2997 mw	2998 A''	2998	$v_a CH_2$ (100)		
			2988 mw					
/2962 m 2953	2947 m	2947 vw	2947 s	2945 A′		$v_{\rm s} { m CH_2} \ (100)$		
2935 sh w	2936 m	_	2937 s		2945	$\nu_{\rm s} { m CH_2} \ (100)$		
1627								
1623 s	1618 s	1630 s	1619 m	1604 A''	1604	$v_{\mathbf{a}} \mathrm{SiD}_{2} \ (100)$		
\ ₁₆₁₆								
_/ 1605								
s 1594	1591 s	1602 s	1591 vs	1588 A'	1587	$v \operatorname{SiD}_2$ (100)		
\s 1584			1563 w					
,1408			1000 H					
1404 m	1394 m	1395 m	1394 w	1396 A′		sCH ₂ (92)		
1398	1391 m		1391 w	130011	1396			
	1991 IU		1331 W		1330	sCH ₂ (92)		
/ ¹¹⁷⁹	1178 sh m		1178 w		1159	wCH_2 (100)		
1179 1177 w	11/0 811 111							
1	1170 sn m 1172 m	1169 m	1173 w	1156 A'		ωCH_2 (100)		
(1177 w		1169 m	1173 w	1156 A′		ωCH_2 (100)		
1177 w 1168		1169 m —	1173 w 1104 w	1156 A′	1114	ωCH_2 (100) $t \text{CH}_2$ (84)		

Table 1. Continued

Infrared			Raman Calculated			D F Db)		
Gas Int.	Liquid Int.	Crystal Iint.	Liquid Int.	T form G form		P. E. D.b)		
/1059								
1052 vw								
\ ₁₀₄₈								
	856 w	859 vw						
844 b my								
/824	000.1							
815 mw	822 sh w							
			777 mw					
774 s	768 s	/767	767 mw	785 A''		rCH_2 (79)		
,765		$\sqrt{762}$ s						
759 s	753 s		754 sh w		778	rCH_2 (71), $wSiD_2$ (16)		
753	,		701311 11		,,,	, 5112 (11), 65122 (10)		
,703				/	703	νC-Cl (48), νC-Si (21), sSiD ₂ (28)		
1	/600	/675	C00	714.4/	700			
699 s	688 s	$\begin{pmatrix} 675 \\ \mathbf{s} \end{pmatrix}$	688 m	714 A'	681	vC-Si (32), v C-Cl (32), w SiD ₂ (30 s SiD ₂ (67), v C-Cl (26)		
\692	$\backslash 679 \mathrm{~sh}$	\671	681 m	700 A′		$sSiD_2$ (77)		
				(676	ν C-Si (48), s SiD ₂ (38)		
$\binom{672}{s}$	663 s	659 s	663 s	637 A'		νC-Cl (58), wSiD ₂ (32)		
\663 ⁻	330 2	000 0	000 2	007.11		, a a (66), was 2 (62)		
/ ⁶⁴⁰								
635 vs	623 vs	618 vs	629 sh w	618 A'		$\omega \mathrm{SiD_2}$ (32), $\nu \mathrm{C-Si}$ (42), $s \mathrm{SiD_2}$ (16)		
\ ₆₃₀								
567 m	567 m		568 mw		596	$w\mathrm{SiD}_2$ (48), $v\mathrm{C-Si}$ (18), $r\mathrm{CH}_2$ (11)		
		552 vw						
$/^{530}$								
525 s	516 m	/ ⁵¹⁷	517 vvs	/523 A′		νSi-Cl (88)		
\ ₅₂₁		512 m			509	νSi-Cl (39), tSiD ₂ (47)		
		500 w	500 sh s	/502 A''		$tSiD_2$ (74)		
					504	$tSiD_2$ (30), $\nu Si-Cl$ (52)		
,442				\	304	$t_{31D_{2}}$ (30), v_{31} -Gr (32)		
436 m	434 m		434 mw		<i>/</i> 10	"G:D (GG) "G G1 (00)		
1	TOT III		494 IIIW		412	$r SiD_2$ (66), $\nu C-Cl$ (22)		
431	405	405	405	407 47		G:D /FA (G:D /10)		
403 w	405 w 238 vw	405 m	405 w 239 mw	407 A''	246	$r\mathrm{SiD}_2$ (54), $t\mathrm{SiD}_2$ (18)		
	238 vw 214 vvw		239 mw 212 s	204 A′	246	δClCSi (58), δClSiC (23) δClSiC (28), δClCSi (28)		
	150 b vvw	V	150 w	40111	151	δ ClSiC (53), δ ClCSi (20), τ (32)		
	130 b vw		129 vw	132 A′		δClCSi (52), δClSiC (47)		
	92 b vvw			91 A''		au (88)		
	78 b vvw	v ?			78	τ (58), δ ClCSi (20)		

a) Int.=intensity; s, m, w=strong, medium, weak; v=very; b=broad; sh=shoulder; T=the trans isomer; G=the gauche isomer; A', A''=A' symmetry species, A'' symmetry species; P.E.D.=potential energy distributions; and v, s, w, t, r, δ , τ =stretching, scissoring, wagging, twisting, rocking, deformation, torsion. b) Only contributions greater than 20% are included.

chloromethylsilane.¹³⁾ Figure 7 shows the dependence of the calculated skeletal frequencies for a different azimuthal angle, where the highest-frequency band observed vanishes in the crystalline state. If this substance had a staggered configuration, the isomer disappearing in the crystalline state would be the *gauche* form, though the calculated frequencies do not satisfactorily reproduce the observed frequencies. Therefore, the previous conclusion of the molecular form determined from the product rule is confirmed.

Solvent Effects of the Spectra. The solvent effects of the infrared spectra are measured using the pair band assigned to the SiD₂ rocking vibrations at 434 and 405 cm⁻¹, where the former disappears in the crystalline state. The band at 434 cm⁻¹ increases in its relative intensity when it is mixed with a polar solvent such as acetonitrile, while the band at 405 cm⁻¹ increases in its relative intensity in a mixture with a non-polar solvent such as n-hexane, as is shown in Fig. 8. Therefore, it can be concluded that the isomer persisting in the crystalline state (the trans form) is less polar than the other (the gauche form).

On the basis of these results, if the C-Cl bond moment is assumed to have the direction of C+-Cl-, the group moment of the CSiH₂(-D₂)Cl group should be mainly in the direction of Si+-Cl-, though it has been reported

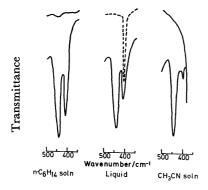


Fig. 8. Solvent effects of the infrared spectra.

that, for (chloromethyl)methylsilane, 5) the group moment of the C_2SiH_2 group is $+\frac{C}{C}>Si<\frac{H}{H}$ — on the bisector of the C–Si–C angle. Therefore, the bond moment of SiCl may be larger than the group moment of C_2SiH_2 .

Normal Vibration Calculation. The normal vibrations of chloro(chloromethyl)silane were calculated in order to get a reliable set of force constants. The bond lengths and angles used were of the same values used in the calculation of the moments of inertia.

First, we attempted to determine the force constants in the modified Urey-Bradley force field for (chloromethyl)silane¹²⁾ and chloromethylsilane¹³⁾ and their deuterated species, ClCH₂SiD₃ and CH₃SiD₂Cl, in order to get a set of transferable force constants. Second, we tested it for the case of this substance and found that, among the calculated frequencies, the skeletal vibrational frequencies were not in good agreement with the observed frequencies especially. Therefore, the force constants were adjusted by a least-squares method in order to predict well the observed frequencies for both the trans and gauche forms of the parent and its deuterated species as the assumption that the repulsion force constants were transferable. Modifications of the force field were also made as follows: 1) the bond interaction force constant, p(C-H), was introduced in order to reproduce the observed C-H stretching frequencies and 2) the trans coupling constants, $t(CH_2, SiH_2)$, $t(SiCCl, SiH_2)$, and t(CSiCl, SiCCl) were introduced in order to reproduce satisfactorily the observed frequencies of the CH₂ and SiH₂ groups and the skeletal deformation frequencies, where the gauche couplings were assumed to be g=-0.5t. As a fair agreement was obtained between the observed and calculated frequencies, no further adjustments of the force constants were made.

The calculated frequencies are given in Table 1, together with the predominant internal symmetry coordinates in the potential energy distributions. The force constants obtained are given in Table 2, together

Table 2. Force constants for chloro(chloromethyl)silane^{a)}

Force const.	ClCH ₂ SiH ₂ Cl	ClCH ₂ SiH ₃ b)	CH ₃ SiH ₂ Cl ^{c)}	Force const.	$ClCH_2SiH_2Cl$	ClCH ₂ SiH ₃ b)	CH ₃ SiH ₂ Cl ^{c)}
<i>K</i> (C-H)	4.393	4.390	4.453	$\kappa(\mathrm{CH}_2)$	0.024	0.027	-0.008
K(Si-H)	2.607	2.638	2.565	$\kappa(\mathrm{SiH}_2)$	0.138	0.056	0.112
K(C-Cl)	1.510	1.697		Y(C-Si)	0.130	0.080	
K(C-Si)	1.580	1.991	2.393	$t(CH_2, SiH_2)^{d}$	0.086	0.081	0.067
K(Si-Cl)	2.205		2.272	$t(SiH_2, SiCCl)^{d}$	-0.107	0.032	
p(C-H)	-0.098		-0.082	t(CSiCl, SiCCl)d)	0.178		
H(Si-C-H)	0.103	0.104	0.123	$F(\mathrm{Si} \cdot \mathrm{C} \cdot \mathrm{H})$	0.271	0.271	0.271
H(Cl-C-H)	0.147	0.147		$F(\operatorname{Cl} \cdot \operatorname{C} \cdot \operatorname{H})$	0.558	0.558	
H(H-C-H)	0.331	0.349	0.353	$F(\mathbf{H} \cdot \mathbf{C} \cdot \mathbf{H})$	0.200	0.200	0.200
H(Si-C-Cl)	0.071	0.093		$F(Si \cdot C \cdot Cl)$	0.210	0.210	
H(Cl-Si-H)	0.077		0.077	$F(\text{Cl}\cdot\text{Si}\cdot\text{H})$	0.243		0.243
H(C-Si-H)	0.101	0.113	0.102	$F(\mathbf{C} \cdot \mathbf{Si} \cdot \mathbf{H})$	0.149	0.149	0.149
H(H-Si-H)	0.170	0.170	0.170	$F(\mathbf{H} \cdot \mathbf{Si} \cdot \mathbf{H})$	0.041	0.041	0.041
H(C-Si-Cl)	0.096		0.117	$F(\mathbf{C} \cdot \mathbf{Si} \cdot \mathbf{Cl})$	0.160		0.160

a) The units of the force constants are in md/Å for stretching, K; bending, H; repulsion, and F; bond interaction, p; and in md·Å for intramolecular tension, κ ; and trans coupling, t. b) Ref. 12. c) Ref. 13. d) The gauche coupling constants are assumed to be g = -0.5 t.

with those of (chloromethyl)silane and chloromethylsilane. The values of the adjusted force constants, except for these of the skeleton, are similar to those of such analogues as (chloromethyl)silane and chloromethylsilane; under the repulsion-force constants we fixed the transferred values. However, all the values of the skeletal stretching constants are considerably smaller than those of the analogues. It is interesting to note that the higher-frequency band for the SiH₂ wagging vibration and the lower-frequency band for the SiD₂ wagging vibration vanish in the crystalline state. The potential energy distributions indicate that this is mainly due to the coupling with the CH2 rocking vibration in the 750—820 cm⁻¹ region. tendency of the SiH₂(-D₂) wagging and SiD₂ rocking vibrations between the liquid and crystalline states is the same as those of (chloromethyl)methylsilane and ethylmethylsilane.5)

The author wishes to express his gratitude to Professor Hiromu Murata and Professor Michiro Hayashi of Hiroshima University for their valuable suggestions and kind encouragement. He also wishes to express his thanks to Professor Tatsuo Miyazawa and Dr. Teizo Kitagawa for the use of the far-infrared and Raman spectrophotometers and to Mr. Tsutomu Sato for his help in the syntheses of the samples.

References

- 1) Presented in part at the 29th Annual Meeting of the Chemical Society of Japan, Hiroshima, October, 1973.
- 2) For example, S. Mizushima, "Structure of Molecules and Internal Rotation," Academic Press Inc., New York

- 1954; I. Nakagawa, C. Tanaka, and M. Tasumi, Kagaku no Ryoiki, 18, 623 (1964).
- 3) R. A. Scott and H. A. Scheraga, J. Chem. Phys., 42, 2209 (1965).
- 4) S. E. Rudakova, T. F. Tulyakova, and Yu. A. Pentin, Opt. Spectry., 20, 353 (1966).
- 5) M. Hayashi, K. Ohno, and H. Murata, This Bulletin, 46, 797, 2044 (1973).
- 6) S. Mizushima, T. Shimanouchi, I. Nakagawa, and A. Miyake, J. Chem. Phys., 21, 215 (1953); I. Ichishima, H. Kamiyama, T. Shimanouchi, and S. Mizushima, *ibid.*, 29, 1190 (1958); K. Fukushima, Kagaku to Kogyo, 18, 1162 (1965).
- 7) D. Seyferth and E. G. Rochow, J. Amer. Chem. Soc., 77, 907 (1955).
- 8) M. Kumada, M. Ishikawa, and S. Maeda, *J. Organometal. Chem.*, **2**, 478 (1964).
- 9) H. H. Anderson, J. Amer. Chem. Soc., **82**, 1323 (1960); N. S. Nametkin, T. I. Chernysheva, O. V. Kuz'min, and K.I. Kobrakov, Dokl. Akad. Nauk SSSR, **178**, 1332 (1968).
- 10) R. H. Schwendeman and G. D. Jacobs, *J. Chem. Phys.*, **36**, 1251 (1962).
- 11) L. Pierce, ibid., 34, 498 (1961).
- 12) K. Ohno and H. Murata, This Bulletin, **45**, 3333 (1972); J. R. Durig and C. W. Hawley, *J. Chem. Phys.*, **59**, 1 (1973).
- 13) E. A. V. Ebsworth, M. Onyszchuk, and H. Sheppard, J. Chem. Soc., 1958, 1453; J. R. Durig and C. W. Hawley, J. Chem. Phys., 59, 1 (1973); K. Sera et al., to be published.
- 14) W. Zeil, R. Gegenheimer, S. Pferrer, and M. Dakkouri, Z. Naturforsch., 27A, 1150 (1972).
- 15) W. A. Seth-Paul and G. Dijkstra, *Spectrochim. Acta*, **23A**, 2861 (1967); W. A. Seth-Paul and H. de Meyer, *ibid.*, **25A**, 1671 (1969).
- 16) R. M. Badger and L. R. Zumwalt, J. Chem. Phys., 6, 711 (1938).